Nonlinear Kirchhoff-carrier Wave Equation in a Unit Membrane with Mixed Homogeneous Boundary Conditions

نویسنده

  • NGUYEN THANH LONG
چکیده

In this paper we consider the nonlinear wave equation problem utt −B ` ‖u‖0, ‖ur‖0 ́ (urr + 1 r ur) = f(r, t, u, ur), 0 < r < 1, 0 < t < T, ̨̨ lim r→0+ √ rur(r, t) ̨̨ <∞, ur(1, t) + hu(1, t) = 0, u(r, 0) = e u0(r), ut(r, 0) = e u1(r). To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on ur and a coefficient function B of the form B = B(‖u‖0) = b0 + ‖u‖0 with b0 > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation

In this work we consider a multi-dimensional higher-order Kirchhoff-type wave equation, with Dirichlet boundary conditions. We establish a blow-up result for certain solutions with positive initial energy. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

متن کامل

Chaotic Vibrations of the Wave Equation Due to a Van Der Pol Type Nonlinear Boundary Condition

Chaotic dynamics has been hailed as the third great scientific revolution of the 20th century, along with relativity and quantum mechanics [1]. In this paper, we consider the one-dimensional wave equation with the initial-boundary value problem on the unit interval. The boundary condition at the left endpoint is linear homogeneous, injecting energy into the system, while the boundary condition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005